We and selected third parties use cookies or similar technologies for technical purposes and, with your consent, for other purposes as specified in the cookie policy. Denying consent may make related features unavailable.
You can consent to the use of such technologies by using the “Accept” button, by closing this notice, by scrolling this page, by interacting with any link or button outside of this notice or by continuing to browse otherwise.
Why the insurance industry needs its own large language model
Large Language Models (LLMs) are a game-changer for the Insurance market - offering enormous potential to deal with large volumes of unstructured data.
Why the insurance industry needs its own large language model
John Cottongim
July 28, 2023
The successful launch of OpenAI's ChatGPT has most recently brought attention to large language models. It is important to understand their limitations and downsides, particularly in the context of the insurance sector, despite the fact that they have the potential to transform human-AI interactions.
Large Language Models
Certain advanced AI algorithms called Large Language Models (LLMs) reads, organizes, predicts, or generates text based on a substantial body of written knowledge. For instance, ChatGPT currently understands and is capable of producing natural language responses based on its training on books, Wikipedia articles, websites, code, and literature from all over the internet.
While differing in accuracy or depth, LLMs like ChatGPT are able to respond to user inquiries on a wide range of subjects. A one-word retort or a multi-page torrent of material may be used as an answer. However, there are certain issues that come with existing LLMs.
With a lack of control or siting of sources and frequently plucking sentences and words out of context, tools like ChatGPT can construct an answer and present it to the user as reality. OpenAI has recognized this problem and warned that users of LLMs who are unable to distinguish between fact and fiction face a serious risk, especially in industries like insurance where specificity and context are crucial for critical business processes such as settlements.
Moreover, LLMs are presently 'trapped' in the era in which they were taught. You would receive nothing or, worse, prices from 2021 if you requested ChatGPT for a summary of the most recent insurance quotes for New York. Due to their size and complexity, today's LLMs are not regularly checking their sources, making it more difficult to access current information, which could restrict some elements of commercial use. There are efforts underway to combat this phenomenon, though today's LLMs struggle to be consistent in a way that would qualify them as 'enterprise grade.'
The need for an insurance LLM
Although LLMs have certain obvious drawbacks and difficulties, there is a lot of room for this technology to be used in the insurance sector in areas like:
Fraud detection - LLMs can help with fraud prevention and detection. To stop fraud in its tracks and save time and money, insurance companies can deploy ChatGPT models. The technology enables firms to immediately take the necessary action by identifying patterns, spotting anomalies, and flagging questionable conduct.
Document analysis - When evaluating complex risks like pollution coverage, where site assessment reports are lengthy, intricate, and subtle, LLMs could help underwriters to parse the signal from the noise. In the past, insurance companies have depended on highly qualified (and costly) underwriting expertise to examine these reports for crucial details that are sometimes overlooked when manual review is the only option. A LLM can guarantee that everything is examined, raising the most germane points to the underwriter for consideration.
Customer service - Substantial improvements in customer experience, shorter wait times, and more accurate information could be made in areas like customer servicing and queries. Using LLMs can also drastically lower operational expenses while boosting productivity and efficiency.
LLMs essentially provide insurance businesses enormous potential to use AI across written documents and data sources, but not in their current state and probably not in their future update - at least not without some assistance.
Maximizing LLMs potential in the insurance industry
Services like ChatGPT provide direct responses without bombarding customers with pointless material or advertisements. This improves the user experience and takes the hassle out of manually searching for, finding, and confirming information.
Technical users can pay a charge to access some of the limited controls behind these LLMs, but it's crucial to note that these controls have limitations as well.
First, fine-tuning is still a task best left to experienced, technical users. Not many businesses have these skills, and even when they do, there are still issues with continuous management and maintenance. Even with the talent and infrastructure to manage it, the model's effectiveness will be severely constrained by the inability to fine-tune using more than one carrier's experience.
A typical insurance business also gathers an enormous amount of sensitive information, such as financial data, medical records, and personal information. The sharing of data between enterprises through third-party solutions like ChatGPT is unacceptable because this information must be kept secure at all costs.
Bringing an advanced LLM into your own cloud environment needs high computer resources, incurring considerable expenditures just to host the model, in addition to the burden of additional storage for the data it is consuming, which brings us to our final point: to address the data privacy dilemma.
LLMs are a game-changer for the insurance sector and have enormous potential to not just evaluate written materials and information at scale, but also to power the automation of more intricate, unstructured, business processes that focus on natural language.
When it comes to general LLMs, we suggest that executives exercise prudence and adopt a test-and-learn strategy. Take care not to upload or use confidential data or anything that may reflect core IP. Equally, be very clear about the use case and expected outcomes. General LLMs are just that, general, which means that in areas that require specificity, such as how to interpret a demand letter, general LLM's may provide confidently incorrect answers if presented with conflicting data such as multiple dates, or data that relies on something that is current, e.g. a live event (remember, the training data for tools like ChatGPT is not live, it is frozen in the time period it was released).
Finally, we recommend using a 3rd party middleware and trusted partners that enable you to adjust the parameters around these models so that you have better control over inputs and outputs, assuring predictability and repeatability within the context of your company.
InsurGPTTM is the first fine-tuned generative AI model designed specifically for the Insurance industry.
InsurGPTTM is a proprietary Large Language Model (LLM) able to read and analyze data from structured and unstructured documents such as ACORD forms, insurance submissions, first notices of loss, and other correspondence.
This technology is embedded into (and exclusively available through) Roots Automation’s Digital Coworkers, which enable organizations to work more efficiently, while eliminating human participation in routine tasks and accelerating the adoption of AI without the heavy burden of tech investment.
Most importantly, InsurGPTTM mitigates the inherent limitations of public generative AI models by focusing on data privacy, response reliability, and bringing forward insurance expertise.
The rich text element allows you to create and format headings, paragraphs, blockquotes, images, and video all in one place instead of having to add and format them individually. Just double-click and easily create content.
Static and dynamic content editing
A rich text element can be used with static or dynamic content. For static content, just drop it into any page and begin editing. For dynamic content, add a rich text field to any collection and then connect a rich text element to that field in the settings panel. Voila!
How to customize formatting for each rich text
Headings, paragraphs, blockquotes, figures, images, and figure captions can all be styled after a class is added to the rich text element using the "When inside of" nested selector system.
Fusce non convallis mi. Curabitur nec rutrum orci. Etiam vitae diam ut tellus venenatis ultricies. Fusce vitae ipsum sed urna tempor tempor et vitae dui.
Fusce vulputate molestie est
Fusce non convallis mi. Curabitur nec rutrum orci. Etiam vitae diam ut tellus venenatis ultricies. Fusce vitae ipsum sed urna tempor tempor et vitae dui. Aliquam nibh ante, tempus vel ultricies nec, tempus sed felis. Nullam et efficitur velit. Aenean odio nulla, facilisis a commodo eu, suscipit at augue.
Aliquam rutrum dui sapien. Aliquam pulvinar lectus accumsan est dictum, et faucibus justo ornare. Mauris placerat placerat consequat. Donec commodo consectetur nunc, et posuere orci lacinia sed. Duis mollis, eros quis porta laoreet, mi est euismod lectus, vitae volutpat quam enim congue tellus. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin ornare laoreet consequat. Integer at accumsan lacus, eget ultricies augue. Vestibulum semper sapien at venenatis pretium. Integer nec iaculis lacus. Sed elit nisi, luctus sit amet vehicula nec, mattis nec purus. Nulla facilisi. Nam ornare in justo eget facilisis.
Praesent sit amet lectus quis metus sagittis tempor.
Sed mattis ipsum vitae turpis laoreet condimentum
Sed orci erat, rhoncus efficitur eros a, sollicitudin commodo tortor
Sed accumsan ex viverra est tincidunt bibendum a non nulla curabitur eget ligula mauris
Nam ut sagittis velit suspendisse ullamcorper quis lorem vitae hendrerit
Vivamus diam orci, dignissim ac nulla hendrerit, porttitor posuere risus
Cras vel leo mattis viverra tellus eget vestibulum est
Praesent sit amet lectus quis metus sagittis tempor.
Sed mattis ipsum vitae turpis laoreet condimentum.
Sed orci erat, rhoncus efficitur eros a, sollicitudin commodo tortor.
Sed accumsan ex viverra est tincidunt bibendum a non nulla curabitur eget ligula mauris.
Curabitur sit amet auctor tellus, at scelerisque sem. In sit amet convallis arcu, id vulputate velit. Proin feugiat interdum nulla, eu malesuada massa commodo quis.
Vivamus diam orci, dignissim ac nulla hendrerit, porttitor posuere risus.
Cras vel leo mattis viverra tellus eget vestibulum est
Etiam arcu metus, vestibulum et consequat sit amet, imperdiet at augue donec condimentum risus at consequat sollicitudin.
In sit amet nisi vitae odio tristique posuere integer vel magna dignissim, sodales mauris a, tempus odio nullam orci sapien, posuere non posuere et, laoreet vel velit.
Quisque eleifend tempor eros aenean et tempus neque nam ut porttitor velit maecenas consectetur, lacus at commodo efficitur, est neque tincidunt leo, et dictum nunc lorem a est.
Maecenas viverra turpis vitae eros tempus porttitor nulla tempor nunc eros, eu elementum arcu dapibus a etiam a tristique metus.
100x improvement to claims document processing for Eastern Alliance
Our customer, Eastern Alliance (“Eastern”), a commercial carrier based in the US, specializing in Workers Compensation, identified a strategic need to modernize operations using various technologies, including AI. Claims document processing was a critical use case, so it was selected as the first area to deploy a Digital Coworker.